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a b s t r a c t

We present a method of finite-strain estimation using the autocorrelation properties of deformed rock.
Autocorrelation is the correlation of an image with itself as a function of an offset or lag. In two and three
dimensions, the lag has both distance and direction. Many geologic materials are initially isotropic, which
means that the autocorrelation function (ACF) will be initially isotropic as well. Deformation imposes an
anisotropic distortion, which can be measured using the Ramsay and Fry strain methods for example, but
can also be estimated from the ACF. X-ray tomography now provides a rapid way to measure the three-
dimensional ACF of a geologic sample. Strain parameters are estimated by using a non-linear, best-fit
method to minimize the anisotropy in the ACF. The ACF method works best for materials where the
objects are internally uniform and contrast strongly with the matrix and other grains.

© 2015 Elsevier Ltd. All rights reserved.

“So fine was the morning except for a streak of wind here and
there that the sea and sky looked all one fabric…” d Virginia
Woolf, To the Lighthouse

1. Introduction

Geologists use the term fabric to refer to the spatial organization
of features in a rock (e.g., Heilbronner and Barrett, 2013). Rocks will
commonly contain primary fabrics, created at the time that the rock
formed (e.g., bedding, cross-bedding, cumulate layering, etc.), and
secondary fabrics, formed bymetamorphism and deformation (e.g.,
metamorphic and melt segregation, foliation, lineation, crenula-
tion, folds, boudins, shear bands, faults, etc.). The autocorrelation
function (ACF) provides a generalized method for measuring the
spatial dimensions and anisotropy of almost all rock fabrics (e.g.,
Panozzo Heilbronner, 1992; Heilbronner and Barrett, 2013).

Many methods of deformation analysis depend on statistical
estimation of rock fabrics (e.g., Ramsay and Huber, 1983). In fact, if
rocks lacked spatially organized fabrics, there would be no struc-
ture to analyze. The atmosphere on a sunny day is one example of a
material that exhibits a lack of contrast. The atmosphere flows as a
fluid, but on a clear day, it lacks any “memory” of its deformational

history because the air lacks any visible internal structure. Simi-
larly, a material where each point is independent of all other points,
such as an image of white noise, also has no information about its
deformational history (Fry, 1979). An atmosphere that contains
both cloudy and clear air can preserve some information about its
flow history. The reason is that the mixture of cloudy and clear air
creates an internally correlated structure, in that particles within a
cloud are likely to be found near other cloud particles, and clear air
particles are likely to be found near other clear air particles. The ACF
provides a generalized method to quantify both the magnitude and
orientation of this correlation.

Our objective here is to relate ACFmeasurements to strain. Thus,
it is important to note that the ACF method, like many strain
methods, requires well-understood features that are statistically
isotropic in the initial state and respond passively to deformation.
As with many strain methods, the success of the measurements
depends on finding samples that are consistent with these
requirements.

Panozzo Heilbronner (1992) was first to propose using the ACF
for measuring finite strain. The approach has become more
appealing given the availability of X-ray tomography (e.g., Fusseis
et al., 2014), which directly images the three-dimensional fabric
of a rock. Note that we use the term “image” in a generic sense to
mean any two-dimensional (2D) or three-dimensional (3D) field. In
X-ray tomography, the features in the rock are represented by the
spatial variation in X-ray attenuation. A 3D attenuation field pro-
vides an ideal image for estimating autocorrelation in rock samples.

For granular materials, deformation creates a directional
* Corresponding author. Department of Geology and Geophysics, Yale University,

PO Box 208109, New Haven, CT 06520, USA.
E-mail address: christopher.thissen@yale.edu (C.J. Thissen).

Contents lists available at ScienceDirect

Journal of Structural Geology

journal homepage: www.elsevier .com/locate/ jsg

http://dx.doi.org/10.1016/j.jsg.2015.09.001
0191-8141/© 2015 Elsevier Ltd. All rights reserved.

Journal of Structural Geology 81 (2015) 135e154

Delta:1_surname
mailto:christopher.thissen@yale.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsg.2015.09.001&domain=pdf
www.sciencedirect.com/science/journal/01918141
http://www.elsevier.com/locate/jsg
http://dx.doi.org/10.1016/j.jsg.2015.09.001
http://dx.doi.org/10.1016/j.jsg.2015.09.001
http://dx.doi.org/10.1016/j.jsg.2015.09.001


variation in grain diameter. The ACF reveals this fabric as a direc-
tional variation in the ACF length scale. In the simplest case, the
axial ratio of the contours of the ACF equals the axial ratios of the
grains (Lado and Torquato, 1990; Torquato and Lado, 1991; Panozzo
Heilbronner, 1992). Panozzo Heilbronner (1992) estimated finite
strain by measuring the ellipticity of contours of the ACF. Others
have considered how the ACF varies spatially throughout the
sample and also as a function of lag (Heilbronner, 2010; Svitelman
and Dinariev, 2013).

We build on this previous work in three ways. First, we intro-
duce a generalized best-fit method for estimating the anisotropy of
the ACF determined from a 2D or 3D image. Second, we develop a
method for estimating the uncertainties associated with the esti-
mated parameters. Third, we consider both theoretical and prac-
tical aspects for implementing this method to measure strain. Our
analysis of the ACF depends, in part, on the type of data analyzed,
and so we begin with an overview of X-ray tomography.

2. X-ray tomography

X-ray tomography provides a 3D image of the X-ray attenuation
structure of an object at a micron scale (Maire and Withers, 2014).
The time required to image a sample is beam-line dependent, but
ranges from several hours to 10 min or faster (Rivers et al., 1999). X-
ray tomography requires limited sample preparation (e.g., Lindquist
and Venkatarangan, 2000; Fusseis et al., 2014). It is non-
destructive, which is ideal for rare or valuable samples (e.g.,
Rivers et al., 1999; Ketcham and Carlson, 2001; Ebel and Rivers,
2007), and for samples where other complementary analyses are
needed (e.g., figure 1 in Hu et al., 2014). The following papers
provide an introduction to the method: Denison et al. (1997);
Denison and Carlson (1997); Ketcham and Carlson (2001); Sutton
et al. (2002); Carlson (2006); Jerram and Higgins (2007); Baker
et al. (2012); Cnudde and Boon (2013); Fusseis et al. (2014);
Maire and Withers (2014). Sample preparation, experimental
design, choosing an appropriate photon source, and image recon-
struction are reviewed by Reeder and Lanzirotti (2006) and Fusseis
et al. (2014).

X-ray attenuation is a scalar field variable, meaning it is a single
quantity that varies spatially throughout the sample volume. A
tomographic image, or tomogram, is represented by discrete
attenuation estimates at nodes within a 3D grid. Each node lies at
the center of a volume element called a voxel, which is the 3D
equivalent of a pixel (Carlson, 2006). The attenuation coefficient
reported in each voxel is the average attenuation within the voxel
(Hubbell and Seltzer, 2004; Gualda et al., 2010).

X-ray attenuation varies throughout a heterogeneous sample.
The example shown in Fig. 1 is a 1392 ! 1392 ! 1 voxel slice from
the 1392! 1392! 1040 voxel grid that spans a full sample volume.
Attenuation is represented by a grayscale intensity (1e256), with
white (256) representing the largest attenuation. Note that the
region surrounding the sample is black because air has minimal
attenuation.

The attenuation coefficient, m, is defined by

m ¼ #1
I
dI
ds

(1)

where s is the path length of the X-ray beam, and I is the X-ray
intensity (Hubbell and Seltzer, 2004). X-ray tomography is able to
easily resolve features with attenuation coefficients that differ by
more than a factor of two (Ebel and Rivers, 2007; Gualda et al.,
2010). The coefficient m scales linearly with density and as a po-
wer law with atomic number (e.g., Denison et al., 1997). Several
calculators are available for estimating m (Hubbell and Seltzer,

2004; Chantler et al., 2005; Berger et al., 2010; MuCalc spread-
sheet: http://www.ctlab.geo.utexas.edu/software/index.php).
Combining X-ray attenuation with other kinds of data can further
improve image resolution (Huddlestone-Holmes and Ketcham,
2005; Boone et al., 2011). X-ray tomography requires that the to-
tal attenuation through the sample is no more than 80% (Gualda
et al., 2010), so suitable rock samples are commonly on the order
of centimeters in size. A contrast in attenuation coefficients, rather

Fig. 1. X-ray tomography image of an XeZ section through a sandstone deformed by
pressure solution (sample 92810-3 from the Olympic subduction complex in NW
Washington State). A deformation fabric is indicated by detrital grains (dark gray),
which are separated by anastomosing cleavage surfaces (long, thin light-gray features,
approximately parallel to the X direction) and by directed overgrowths (thicker light-
gray features, oriented in the X direction). The cleavages have accommodated short-
ening in the Z direction, and the overgrowths, extension in the X direction.

Fig. 2. X-ray attenuation coefficients for various geologic materials (Chantler et al.,
2005), as normalized by the coefficient for quartz. The gray regions show a factor of
two range for an attenuation coefficient relative to that for quartz. Minerals that lie
outside that range are easily resolved relative to quartz in an X-ray tomogram.
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than the absolute value, is important for successfully imaging fab-
rics using X-ray tomography. For example, most minerals have a
strong contrast with quartz except for feldspar (Fig. 2). The X-ray
beam energy can be adjusted to improve the contrast for some
minerals. The large jumps in the attenuation value are absorption
edges, and correspond to the ejection of electrons from specific
electron shells (Gualda et al., 2010).

Many software programs have been developed to analyze 3D
tomography data for geologic materials: Quant3D (Ryan and
Ketcham, 2002; Ketcham and Ryan, 2004), Blob3D (Ketcham,
2005a; 2005b), Ctsta (Liu et al., 2009), WinDICOM (O'Connor
et al., 2009), Morphoþ (Brabant et al., 2011), Pore3D (Brun et al.,
2010), PhaseQuant (Elangovan et al., 2012), YaDiv (Friese et al.,
2013). Fusseis et al. (2014) reviews these programs in more detail.
In particular, Ketcham (2005a; 2005b) provides a way to isolate the
shape of segmented phases and analyze them for strain estimates.
Some authors have highlighted difficulties in estimating parame-
ters using segmentation methods (e.g., Iaasonov et al., 2009;
Baveye et al., 2010; Iassonov and Tuller, 2010; Andr€a et al., 2013).
Ourmethod avoids these problems by using a statistical description
of the entire sample, independent of actual grain boundaries.

3. The autocorrelation function

To provide a more intuitive understanding of the ACF, we begin
by considering a few qualitative examples. Fig. 3a shows an average
of yearbook photos for high-school women in the 1967 class in Fort
Worth, Texas (Salavon, 1998). The individuals are unrecognizable,
but the average shows a clear structure that is immediately iden-
tifiable as a generic portrait. The average also shows hints about the
dress and hairstyle typical for 1967.

Similarly, Fig. 3b shows an average of 200 tomogram slices, or
approximately 392 mm, for the sandstone sample in Fig. 1. If the
image volume had no correlated structures (e.g., no grains or foli-
ation), then each pixel in the imagewould be independent of all the
other pixels, and the average image in Fig. 3b would be a statisti-
cally uniform shade of gray. However, the image shows areas with

distinct pixel intensities, which indicate spatial correlations over
the 200 slices.

Considering autocorrelation more formally, the ACF is repre-
sented by the notation r(r), where the lag vector r indicates the
offset between the image and its copy, and the autocorrelation
statistic r is a measure of the overall similarity of the images in this
offset relationship. r is limited to the range #1 to þ1. A value of þ1
means that the image and its offset copymatch exactly, at a pixel or
voxel level (i.e. perfect correlation). A value of 0 means that the
image and its offset copy have no statistical similarity. A value of#1
means that the image and its offset copy are complete opposites
(i.e., perfect anticorrelation). The ACFs for most real images usually
range from 0 to þ1.

Several simple examples illustrate basic features of the ACF
(Fig. 4). The examples are composed of two phases, which appear as
black circles surrounded by a white background. It is helpful to
envision the autocorrelation at a specific lag as the overlapping area
of the black circles in two identical, offset sheets (Panozzo
Heilbronner, 1992). However, when the ACF is calculated, the im-
age is rescaled so that the mean and standard deviation of the in-
tensity values are zero and one, respectively. Thus, the ACF makes
no distinction between the phases. Visually, we might consider the
white phases to be the background or the matrix in Fig. 4, but the
ACF is only sensitive to the contrast between the phases and the
relative abundance of the phases.

The first example (Fig. 4a) has a single circle, which can be
viewed as a “dilute phase”, in that the black circle occupies a very
small area in the total aggregate. This example is analogous to
sparse amygdules or phenocrysts in a volcanic rock. The ACF for this
example (“Single Circle” in Fig. 4d) starts with r ¼ 1 at r ¼ 0 and
decreases to zero at r ¼ 2R where R is the radius of the circle. The
reason is that the black phase is dilute enough that the only cor-
relation is “self-correlation”, where objects still overlap with their
offset copies.

The second example (Fig. 4b) has a square lattice of periodically
repeating circles, arranged with a uniform distance 4R between the
centers of each circle in the horizontal and vertical directions. The

Fig. 3. Correlated structure as illustrated using averaging. (a) An average of yearbook pictures for women in the 1967 graduation class at Fort Worth High School (Salavon, 1998). (b)
An average of 200 XeZ sections from an X-ray tomogram of deformed sandstone, representing an out-of-plane thickness of 392 mm (sample 92810-3 from the Olympic subduction
complex).
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ACF for this example is shown only for the image horizontal di-
rection (“Square Lattice” in Fig. 4d). This example has two impor-
tant differences from the “Singe Circle” example. First, the circles in
this example compose a much greater fraction of the image. As a
result, the black circles and white background have opposite signs
in the rescaled image, and have negative autocorrelation values
where the circles and matrix overlap. This anticorrelation is
expressed by the shorter decay lengthscale of the “Square Lattice”
ACF compared to the “Single Circle” ACF, and by the negative
autocorrelation values near r¼ 2R and r¼ 6R.

Second, the “Square Lattice” ACF also has additional maxima at
r¼ 4nR, where n ¼ 1, 2, … ∞ (Fig. 4d shows the first of these
maxima at r¼ 4R). These maxima correspond to “neighbor-corre-
lation” caused by overlap between neighboring circles (c.f.,
blocking-function, Torquato, 2002). For this example, the self-
correlation and neighbor-correlation parts of the ACF are well
separated because the lattice spacing, 4R, is much larger than the
diameter, 2R, of the circles.

The third example (Fig. 4c) has an irregular set of anticlustered
circles, which aremeant to represent grains in a rock. Natural grains
have an irregular (i.e., non-periodic) arrangement and are anti-
clustered, meaning they do not physically overlap. In addition, the
shapes and placement of the objects are statistically isotropic,
meaning that there is no significant dependence on direction. Thus,
the ACF (“Anticlustered” in Fig. 4d) is solely dependent on the offset
distance, r ¼ jrj.

The ACF for this example shows a shorter decay lengthscale at
short lags (r< R) when compared to the previous examples. As
before, this results from anticorrelation between the black circles
and white background. This example also shows a decaying peri-
odic pattern at long lags (r> R). The ACF is similar to that for the

Square-Lattice example, except for the fact that the self-correlation
and neighbor-correlation parts of the ACF now overlap. This over-
lapping is expected in natural geologicmaterials, where the spacing
between grain centers is similar to the diameter of the grains.

The anticlustered condition creates a decaying periodicity in the
ACF, with a wavelength proportional to the diameter of the circles.
In statistical mechanics, this problem is commonly treated using
the pair-correlation function (Debye et al., 1957; Torquato and Stell,
1982, 1983, 1985). The pair-correlation function gives the proba-
bility of finding a particle center at a lag r from a reference particle
center. The density of points in a Fry diagram (Fry, 1979) is pro-
portional to the probability provided by the pair-correlation func-
tion. Note that the peak at r/R¼ 2.5 in the “Anticlustered” curve in
Fig. 4d corresponds to the high-density girdle in the nearest-
neighbor distribution of a Fry plot (Fry, 1979; Panozzo
Heilbronner, 1992). Torquato (2002) has a detailed review of this
topic.

In the Introduction, we mentioned that there are cases where a
material might lack a spatially organized fabric. The next two ex-
amples highlight end-member cases. The examples are so simple
that illustrations are not needed. The first is a material with only
one phase. The image would have a uniform intensity, so r would
be everywhere 1, regardless of the lag. This example is analogous to
a monomineralic rock. Of course, a monomineralic rock might be
composed of grains with different crystal orientations, as deter-
mined, for example, by electron backscatter diffraction. For this
case, the “phases” could be defined on the basis of orientation, and
a standard ACF analysis would then be possible. The second
example is a two-phase material, where one phase is distributed
randomly as infinitesimal grains. In practical terms, infinitesimal
wouldmean a grain that is near the size an individual pixel or voxel.

Fig. 4. The autocorrelation function for three examples: (a) a single circle, (b) a square lattice of circles, and (c) an anticlustered distribution of circles. (d) The autocorrelation
function r(r) for these examples is related to the change in the overlapping area of the circles, which is set to 1 when the lag r ¼ 0, and decreases as the lag increases to R, the radius
of the circles.
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For this example, r ¼ 1 at r ¼ 0, but drops to r ¼ 0 for r > 0.
We now consider the effects of deformation on autocorrelation.

The ACF contains information about both particle shapes and
neighbor distances, and the focus here is to distinguish between the
deformation of particles, as measured by Ramsay's (1967) Rf/f
method, and the deformation of nearest-neighbor distances, as
measured by the Fry (1979) method.

For the first example (Fig. 5aeb), consider a 2D aggregate
composed of regularly spaced black ellipses with the short axis RY
equal to half the length of the long axis RX. The spacing is isotropic,
meaning that the distances between ellipse centers are the same in
both the horizontal and vertical directions. The influence of
anisotropy on the ACF is indicated by different decay length scales:
r reaches zero at lag r/RY¼ 2 for the Y direction, and at r/RY¼ 4 for
the X direction. The ratio of these two decay length scales is equal to
the axial ratio of the ellipses. We use the term “Ramsay effect” to
describe this anisotropy of r associated with self-correlation of
particle shapes. The ACFs for the X and Y directions show a second
maxima at the same lag, r/RY¼ 8, which means that the neighbor
correlation is isotropic. The Fry method would show zero strain for
this case.

Now consider the second anisotropic example (Fig. 5ced),
where circles with radius R are arranged on an anisotropic grid,
such that the object centers are spaced 6R apart in the X direction,
and 4R in the Y direction. The ACF is isotropic for self-correlation. In
other words, the length scale for initial decay of r is the same,
regardless of orientation. Ramsay's Rf/f method would find zero
strain for this example. Note, however, that r increases back to one
at r/R¼ 6 in the X direction and r/R¼ 4 in the Y direction. In other

words, r is isotropic for self-correlation but anisotropic for
neighbor-correlation. Thus, we use the term “Fry effect” to describe
the anisotropy of r due to the distribution of neighboring grains.

The last set of examples (Fig. 6) are based on a 2D aggregate
made up of three phases, rendered in black, gray, and white, and
assigned image intensities of 10,1, and 0, respectively. The objective
is to show how the ACF is affected when more than two phases are
present. The first example (Fig. 6aeb) has large black elliptical
grains with vertical long axes, and small gray elliptical grains with
horizontal long axes. The full 2D ACF is shown as contours of r as a
function of the x and y components of the lag vector. All of the r
contours have the same elliptical shape as the black grains. The
reason is that black grains are large in size and have a large contrast
with the other intensities, so the ACF is strongly weighted towards
the grain shapes for this phase.

The second example (Fig. 6ced) shows what happens when the
gray and black phases are exchanged. The black elliptical grains are
now small, but they still have a strong contrast relative to the other
two phases. The 2D ACF shows that, at short lags, the r contours
have an elliptical shape similar to that for the black grains. As the
lag distance increases, the r contours transition to an elliptical
shape similar to that of the large gray grains. The gray grains are
larger in this example, which compensates for its low contrast
relative to the white phase, but only at long lengthscales.

This example highlights a subtle feature of autocorrelation for
images with a range of grayscale intensities. The ACF is more
heavily weighted towards features that have a strong contrast
relative to the rest of the image. As a result, image processing
methods can be used to weight the ACF towards specific features of

Fig. 5. The Ramsay and Fry effects in the ACF. (a, b) At short lags, where r/R < 1, the ACF represents the correlation of features with themselves, and thus the ACF is sensitive to the
anisotropy of features. The anisotropy in this range is similar to that measured by the Ramsay method, which is focused on the distortion of features. (c, d) At long lags, where r/
R > 1, the ACF is sensitive to the anisotropic distribution of features with respect to each other. This anisotropy is similar to that measured by the Fry method, which focuses on the
distribution of nearest neighbors.

C.J. Thissen, M.T. Brandon / Journal of Structural Geology 81 (2015) 135e154 139



the fabric. Useful methods potentially include gamma correction or
image segmentation (e.g. Heilbronner and Barrett, 2013).
Remember, however, that the image is standardized before calcu-
lating the ACF. As a result, the ACF is unaffected by linear rescaling
of the image intensities (Panozzo Heilbronner, 1992).

4. Estimating grain size in the ACF

Grain size is a significant parameter in its own right, but it is
especially important for distinguishing between self-correlation
and neighbor-correlation. There are several ways to estimate the
average grain radius. To guide this discussion, we generated a 3D
aggregate composed of non-overlapping, close-packed, identical
black spheres set in awhitematrix (Fig. 7a). (The numerical method
is described in Section 7.1.) The circles vary in size, but this result is

simply due to sectioning through the 3D spheres, which otherwise
have a uniform radius R ¼ 1. The ACF for the full 3D volume as a
function of radial lag exhibits both self-correlation and neighbor-
correlation (Fig. 7b). The spheres in this example compose 54% of
the volume.

Debye and Bueche (1949) proposed an exponential model for
the ACF as determined from X-ray scattering of atomic-scale
vacancies

rðrÞ ¼ expð#r=RCÞ (2)

where RC is the characteristic lag for the decay of rwith increasing r.
Ma€atzler (2002) showed that the characteristic lag RC of the ACF for
an aggregate of identical overlapping spheres is equal to the radius
of the spheres. Debye et al. (1957) estimated RC using the derivative
of the ACF at r ¼ 0. For (2), this estimate is RC z #(dr(r ¼ 0)/dr)#1.

Fig. 6. Two examples showing how the ACF is affected by the contrast in intensity between phases. The ACFs for these examples are shown as contours of r in terms of x and y
components of the lag vector and a contour interval of 0.1. (a) For the first example, the gray ellipses are small and have little contrast with the surrounding white phase, so (b) the
ACF contours everywhere mimic the anisotropy of the larger black ellipses. (c) For the second example, the black ellipses are small, but have high contrast with respect to the other
two phases. (d) As a result, the ACF contours have the same elliptical shape as the black phase at short lags (r/RX ~ 0.1), but take on the elliptical shape of the gray phase at long lags
(r/RX > ~0.3).
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An alternative is to estimate the parameters in (2) using a least-
squares fit to the ACF (Ma€atzler, 2002). Neither approach is satis-
factory. The derivative method emphasizes only a small fraction of
the ACF, and the least-squares approach has problems separating
self-correlation from neighbor-correlation. This point is illustrated
in Fig. 7b, which shows the poor fit of the exponential model to the
ACF of the simulated aggregate. The best-fit estimate RC ¼ 0.31 is
much smaller than the expected value, R ¼ 1.

A different approach approximates the grain size by using a
characteristic point in the short-lag part of the ACF (Panozzo
Heilbronner, 1992; Buscombe et al., 2010). The convention is to
use the “half-height lag”, r*, which is the lag where r first drops to
0.5. Panozzo Heilbronner (1992) estimated that the average grain
radius is given by Rz1:5r*. Based on extensive calibration between
the ACF and measurements for images of unconsolidated sedi-
ments, Buscombe et al. (2010) recommended that Rzpr*.

Another approach to estimating grain size is the spherical
model, which refers to the idealized ACF for self-correlation of a
single sphere (p. 79 in Torquato, 2002)

rðrÞ ¼ ðr ' 2RÞ
!
1# 3

4
r
R
þ 1
16

"r
R

#3$
(3)

Note that the logical expression (r' 2R) equals 1 if true and 0 if
false. Substitution of r(r*) ¼ 0.5 into (3) gives

R ¼ 1:44r* (4)

which is nearly identical to the estimate of Panozzo Heilbronner
(1992).

In our experience, all of these approximations work poorly for
dense aggregates. As an example, the simulated aggregate has
r* ¼ 0.35. Thus, the approximations above predict average grain
radii of 0.50, 0.53, and 1.10. These approximations are crude, in part
because they do not account for neighbor-correlation. The method
suggested by Buscombe et al. (2010) gives the closest approxima-
tion to the true value of one. This is probably because our grain-
supported aggregate is similar to the unconsolidated sediments
on which the recommendation is based. Buscombe et al.’s method
will diverge from the true radius for materials that cannot be
approximated as unconsolidated sediments.

To overcome these issues, we propose a generalized two-
component model for the isotropic ACF

r rð Þ ¼ r ' 2RSð Þ 1#
3
4

r
RS

þ
1
16

r
RS

! $3
 !

þ fN exp # r
RN

! $b
 !

sin
pr
RN

! $
(5)

where the self-correlation component of the ACF is represented by
(3) and the neighbor-correlation component, by a sinusoid with a
decaying amplitude (modified from equation (7) in Cule and
Torquato, 1999). This model has four unknown parameters: Rs, fN,
RN and b. RS represents the length scale for self-correlation, and
thus is representative of the average grain radius. fN defines the
amplitude of the neighbor component. Note that fN can be negative
for multi-phase aggregates, given that neighboring phases are
likely to have different intensity values. The neighbor component
has two parts. The decay of the neighbor-correlation with r is
represented by a stretched exponential function, where RN defines
the decay length scale and the power b defines the amount of
stretching of the exponential function. We have found that b values
other than one are needed to ensure a good fit to an isotropic ACF.
The periodicity for the neighbor-correlation is represented by the

Fig. 7. Comparison of ACF model functions. (a) A 3D synthetic aggregate composed of
non-overlapping identical spheres. (b) The ACF for the synthetic aggregate (gray line)
and best-fit solutions using the exponential model (dash line), the spherical model
(solid line), and the 2-component model (dash-dot line). The “half-height” lag is shown
by r*. (c) The best-fit 2-component model (solid line) and the self-correlation (dash-dot
line) and neighbor-correlation (dash line) components for that fit.
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sin function, which has a wavelength of 2RN. Torquato (2002,
Chapter 5) discussed a variety of analytical solution for ACFs for
simple aggregates. Equation (5) does include the spherical model
for self-correlation, but it is otherwise empirical in its derivation.
The advantage is that the two-component model is relatively
simple and thus much easier to use for estimation.

The unknown parameters for (5) can be estimated using a
nonlinear least-squares routine, such as the one discussed below
for strain estimation.We have found that the analysis works best by
using the Fisher transform to convert r to z, which has more uni-
form variance with r (see below for details). The starting estimates
for RS and RN are set to be about five times larger than R, as
determined from (4). This strategy is important for avoiding local
minima for the best-fit solution. Starting estimates for b and fN are
set to 1 and 0, respectively. RS and RN are constrained to be positive.

The two-component model gives a best-fit solution for the
synthetic example of RS ¼ 0.97, which compares well with the true
value of 1. The estimates for the other parameters are fN ¼ #0.36,
RN ¼ 1.89, and b ¼ 3.41. The fit has an R2 ¼ 0.82. We use the F ratio
test of Bevington and Robinson (2003, p. 207) to compare the fit
provided by the two-component model and the spherical model. In
all cases, the two-component model provides a significantly better
fit.

Fig. 7c shows the best-fit ACF, along with the predicted com-
ponents for self-correlation and neighbor-correlation. The ACF is
dominated by the self-correlation component, but both compo-
nents are significant at short lags, 0 < r/R < 2. The neighbor-
correlation component commonly decays to zero by r/R ¼ 5. Thus
there is little need to analyze the ACF beyond that point.

5. Estimating the autocorrelation function

Consider the general case for an image, where U(x, y, z) are
continuously varying scalar values within a 3D domain spanned by
x, y, and z. We focus here on X-ray attenuation, but the scalar field
can be anything that characterizes the material in that domain. Our
objective is to estimate the autocorrelation for this field variable as
a function of the components of the lag vector, rx, ry, and rz. We
introduce a standardized variable Us defined by

US ¼ U # c
sðU # cÞ

(6)

where c is the mean value for U and s(U#c) is the standard devi-
ation of U around the mean. The standardization in (6) ensures that
r remains within the limits of ±1. The ACF is defined using
Us (Priestley, 1981),

r rx; ry; rz
% &

¼
Z

V

US x; y; zð ÞUS x# rx; y# ry; z# rz
% &

dx dy dz: (7)

and the integral is over the volume V.
The ACF is simply a cross-correlation of the field variable with a

copy that is offset by rx, ry, and rz. Equation (7) provides a formal
definition, but it is too cumbersome to serve as a method of
calculation.

The Fourier transform provides a faster way to calculate the ACF.
We start with a discrete uniform grid of standardized attenuation
values, Us(jx, jy, jz), where D is the grid spacing, and jx¼ 0 to Nx# 1,
jy¼ 0 to Ny# 1, and jz¼ 0 to Nz# 1 are space-domain indices in the
x, y, and z directions. The Fourier transform is used to convert the
grid into the wave domain. The Fourier coefficients are given by

U S
%
kx; ky; kz

&
¼ ℱ

"
US

"
jx; jy; jz

##
(8)

where ℱ and ℱ #1 are operators that indicate the Fourier transform
and its inverse, and kx¼ 0 to Nx# 1, ky¼ 0 to Ny# 1, and kz¼ 0 to
Nz# 1 are wave-domain indices in the x, y, and z directions. Keep in
mind that the Fourier coefficients U (kx, ky, kz) are, in general,
complex valued.

The Fourier coefficients of the ACF are determined by the
products

ℛ
%
kx; ky; kz

&
¼ U S

%
kx; ky; kz

&
U (

S
%
kx; ky; kz

&
(9)

where * indicates the complex conjugate. The inverse Fourier
transform is used to return the ACF to the space domain,

r
"
jx; jy; jz

#
¼ ℱ #1%R

%
kx; ky; kz

&&
(10)

Consider the following MATLAB example, where imageFile.tif is
2D grayscale image file accessible in the current directory. The
image should have an odd number of pixels in each dimension.

1. U ¼ double(imread('imageFile.tif'));
2. c ¼ mean(U(:));
3. Us ¼ (U-c)/sqrt(mean((U(:)-c).̂ 2));
4. N ¼ numel(U);
5. Uscript ¼ fftn(Us)/N;
6. Rscript ¼ Uscript.*conj(Uscript);
7. Rho ¼ fftshift(ifftn(Rscript)*N);
8. [nx,ny] ¼ size(U);
9. rx ¼ linspace(-(nx-1)/2,(nx-1)/2,nx);

10. ry ¼ linspace(-(ny-1)/2,(ny-1)/2,ny);
11. [Ry,Rx] ¼ ndgrid(rx,ry);
12. r ¼ sqrt(Rx.̂ 2 þ Ry.̂ 2);
13. figure; plot(r(:), Rho(:), '.');
14. figure; pcolor(Rx, Ry, Rho); shading interp; axis equal;

Line 1 loads the image into the matrix U and converts the values
to double precision. Lines 2 and 3 standardize the matrix. Lines 4e7
calculate the ACF, and lines 8e12 calculate the x and y lag com-
ponents in units of pixels. Line 13 plots the ACF as a function of lag
distance. Line 14 plots the ACF as a 2D color map. Note that the
“fftshift” command in line 7 organizes the matrix Rho so that the
zero lag, r¼ 0, is located at the central pixel.

There has been a lot of discussion about how to reduce bias and
increase precision when estimating the ACF (e.g., Priestley, 1981;
Broerson, 2006). For our study of fabrics, we are not as interested
in the true values of the autocorrelation, but rather the anisotropy
of the autocorrelation. As such, we have found that the Fourier
method, which has been criticized as less than optimal for esti-
mating the true values of the ACF (Broersen, 2006), does the best
job preserving sample anisotropy. Windowing functions are
commonly used in conjunction with the finite Fourier transform to
reduce edge effects and enhance spectral resolution (e.g., Press
et al., 2007, p. 656e660). Our tests using various windowing fil-
ters have found that typical windowing functions, such as the Hann
filter, generate artificial anisotropy in the sample, which causes
biases in the estimated deformation parameters. Sample anisotropy
is best preserved by calculating the ACF from the untreated stan-
dardized image. (Of course, the image has already been delimited
(i.e., windowed) to finite dimensions.) The edges of the image do
generate some ringing (i.e., the Gibbs effect), but this ringing ap-
pears to contribute relatively little to the ACF (also see Panozzo
Heilbronner, 1992).

6. Estimating deformation parameters

To estimate the deformation parameters from a sample ACF, we
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search for a stretch tensor that reduces the ACF to an isotropic form.
The assumption, one that is used in almost all strain methods, is
that the fabric of the material was isotropic before deformation.

The deformation of a material line is defined by

r ¼ VRr0; (11)

where V is the left-stretch tensor, R is a rotation tensor, and r0 and r
are vectors representing the material line before and after the
deformation. For geologic studies, there is generally little infor-
mation about R. Thus, the estimation is focused solely on the
stretch tensor. The left-stretch tensor representation is preferred
because it can be calculated without knowing R. The stretch tensor
is usually decomposed into its principal form

V ¼ TLVTT; (12)

where T is the transformation matrix with column vectors that
correspond to the principal stretch axes in the sample coordinate
frame. The superscript T indicates the matrix transpose. The tensor
LV is diagonalized, with the principal stretches SX, SY, and SZ on the
diagonal and zeros elsewhere. The Hencky tensor, E, defined by

E ¼ lnðVÞ ¼ T lnðLVÞTT; and (13a)

V ¼ expðEÞ ¼ TexpðLEÞTT; (13b)

provides a better formulation for statistical estimation of the
stretch tensor (Brandon, 1995; Mookerjee and Peek, 2014). Like the
stretch tensorV, the Hencky tensor is symmetric, whichmeans that
it has six unique values, as indicated by E¼ ET. The transformation
matrix is the same for both V and E.LE is a diagonal matrix with the
principal natural stretches EX, EY, EZ on the diagonal. Note that ln
and exp in (13) refer to the matrix definitions for the natural log-
arithm and exponential functions (Higham, 2008 and as imple-
mented in Matlab). The natural volume-strain is

EV ¼ lnðV=V0Þ ¼ trðEÞ; (14)

where V0 and V are the initial and final volume of the sample, and tr
is the trace (i.e. sum of the diagonal elements). The deviatoric
Hencky tensor is defined by

E0 ¼ E# IEV=3; (15)

where I is the identity matrix. Most methods of strain analysis do
not provide information about the volume-strain component of the
deformation (Brandon, 1995). This is also true for autocorrelation
estimates of strain, given that we have no information about the
length scale of the ACF for the material prior to deformation. In
some cases, one can make independent estimates of volume strain
(Wright and Platt, 1982; Ring and Brandon, 1999). Substitution of
this information into (15) can be used to convert E0 to E.

We follow the usual convention where the principal values are
organized as E X)EY) EZ, referring to the maximum extension di-
rection X, the intermediate direction Y, and the maximum short-
ening direction Z.

The Hencky tensor extends the scalar concept of natural strain,
E¼ ln(S), to a tensor representation, where stretch S¼ l/l0 with l
and l0 representing the final and initial lengths of a material line. As
proposed by Hencky (1931), natural strain scales linearly with
strain rate during a finite deformation, so it provides a more natural
representation of strain. In addition, natural strain also allows for a
simpler representation of errors, as symmetric Gaussian variations
around a mean value. In fact, the natural log is one of several power

transforms that are used in statistics to transform data sets into a
form where standard Gaussian statistics can be used (Box and Cox,
1964).

For our purposes, we need to estimate the change in the lag
vector from its present deformed state to its initial undeformed
state. The ACF is assumed to have been isotropic in the initial state,
so we only need the magnitude r0 of the initial lag vector r0 ¼ kr0k.
We define an “undeforming” function fu (c.f. Spencer, 1980, eq.
6.21),

r0 ¼ fuðr;E0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rTV0#2r

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rTexpð#2E0Þr

q
: (16)

Note that in this equation and elsewhere below, we use a semicolon
to separate known variables on the left (e.g., r), from unknown
parameters on the right (e.g., E0).

6.1. Estimating the initial autocorrelation function

Autocorrelation is limited to the range #1 to þ1, which makes
the variable poorly suited for statistical analysis. The Fisher trans-
form z ¼ arctanh(r) and its inverse r ¼ tanh(z) link the autocor-
relation variable r to a new variable z, which has a range#∞ toþ∞.
This variable z usually follows a Gaussian distribution (Alexander,
1997), which makes it better suited for least-squares estimation,
including calculation of uncertainties for the estimated parameters.

We seek a least-squares estimate for the unknown parameters
E0 and c. We have already introduced E0 above, which contains 6
unique coefficients. The vector c contains coefficients for a spline,
which is used to represent the isotropic ACF as a function of r0, as
represented by z0 ¼ z0(r0;c). We have experimented with several
types of functional forms for z0, but we found that a cubic spline is
both sufficiently flexible to represent the isotropic ACF for all of our
test cases and computationally fast, as needed for a nonlinear
search algorithm. We would prefer to use the two-component
model (5) but it is computationally too slow for our estimation
here. The two-component model is used afterward to find best-fit
estimates for the undeformed ACF.

For our least-squares calculation, we convert the gridded
problem above into a serial list of i ¼ 1 to n model equations

zi ¼ z0;iðfuðri;E0Þ; cÞ þ εi (17)

where n¼NxNyNz. Equation (17) shows that we are using the
estimated isotropic ACF, along with the undeformed length of r, to
get predicted autocorrelation values. εi is a stochastic variable, and
represents errors associated with the autocorrelation measure-
ment. εi is assumed to be independently and identically distributed,
with an expected mean of zero, and a variance of s2ε :

The best-fit estimates bE
0
and bc are found numerically by

searching for a candidate solution that minimizes the objective
function,

~S ¼ S
"
~E
0
; ~c
#
¼ 1

v

Xn

i¼1

h
zðriÞ # z0

"
fu
"
ri; ~E

0#
; ~c
#i2

(18)

The tilde and caret symbols are used to indicate the state of
estimation for a parameter variable. The tilde indicates a candidate
estimate in the search, and the caret indicates a best-fit estimate
that minimizes the least-squares objective function.

The degrees of freedom, n, for the objective function is defined
by n ¼ n#mc#mE, where mc and mE are the number of unknown
parameters in c and E. The best-fit solution provides an estimate for
bs2
ε ¼ bS.
Equation (18) is a separable least-squares problem (Moler, 2008,
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p 154), in that the piecewise-spline estimate has a linear least-
squares solution and the strain-tensor estimate has a nonlinear
least-squares solution. As a result, the nonlinear search is focused
exclusively on estimating the strain tensor. We use the “fmincon”
function in MATLAB to estimate the six coefficients of the Hencky
tensor

E0 ¼

2

4
E011 E012 E013
E012 E022 E023
E013 E023 E033

3

5; (19)

subject to the constraint trðE0Þ ¼ E011 þ E022 þ E033 ¼ 0. Thus, the
effective number of unknown coefficients for E0 is mE¼ 5 for a 3D
data set. Note that (15e19) are easily adapted to estimate a 2D
strain tensor, which would have mE¼ 2.

Equation (18) is minimized in the following manner:

1) The search is started with a candidate solution ~E
0 ¼ 0, which

corresponds to zero deformation.
2) Equation (16) and ~E

0
are used to convert the observed lag vectors

ri to a candidate estimate of their initial lag distances, ~r0;i.
3) A candidate estimate for the initial isotropic autocorrelation

function, z0ðfuðri; ~E
0Þ; ~cÞ, is estimated using a spline as a model

function with ~r0;i, and zi.
4) The objective function (18) is evaluated using the candidate

estimate z0ðf ðri; ~E
0Þ; ~cÞ.

5) The value of the objective function for the candidate estimates,
~Sð~E0; ~cÞ, is passed to the nonlinear search-algorithm, which tests
for convergence to a final minimum value for ~S. If the test is
positive, ~S is returned as the best-fit estimate, bS, and the routine
also returns the best-fit estimates for the parameters, bE

0
and bc . If

the test is negative, then the algorithm selects a new candidate
estimate for ~E

0
and returns to step 2 to evaluate that estimate.

With any nonlinear problem, there is always a concern that the
optimization will become trapped in a local minimum, resulting in
a flawed estimate. Our algorithm shows no sign of this kind of
problem. Perhaps most telling is that the optimization gives esti-
mates that fit our different datasets very well. Thus, we suspect that
the objective function has a well-defined global minimum near the
starting point ~E

0 ¼ 0. Bootstrap experiments, discussed below,
indicate that the objective function has a quasi-Gaussian form
around the best-fit minimum. There may be future cases where the
solution fails, but this should be easy to spot by a poor fit between
the best-fit objective function and data, or by wild, non-physical
estimates for the parameters and their uncertainties.

6.2. Assessment of fit

The quality of fit can also be judged using a residuals plot, where
the standardized residuals εi/sε are plotted on the y-axis and the
estimated initial lag distance r0,i, on the x-axis. The standardized
residuals should be independently and identically distributed with
a mean of zero and a standard deviation of one.

Another useful measure of the fit is the R2 statistic, which is
defined using the conventional formula

R2 ¼ 1#
varðεiÞ
varðziÞ

; (20)

where zi refers to the observed Fisher-transformed autocorrelation
values.

The statistical independence of the residuals is tested using the
DurbineWatson statistic d (p. 68, Draper and Smith, 1998),

d ¼
Pn

j¼2
%
εi # εj#1

&2
Pn

j¼2 ε
2
j

(21)

where the subscript j indicates the residuals in order of increasing
r0. The null case, where there is no serial correlation, has an
expectation d¼ 2.

6.3. Uncertainties for estimated strain parameters

At termination, the MATLAB function “fmincon” reports the
Hessian matrix H for the best-fit solution E0. The Hessian is used to
derive a linear approximation to the parameter covariance matrix
(Press et al., 2007, p. 799e802)

cov vech E0
% &% &

zs2εH
#1 (22)

where the half-vectorization function, vech, converts E0 into a six-
component column vector for the strain parameters. As a result,
cov(vech(E0)) is a 6! 6 covariance matrix for the six strain pa-
rameters in E0.

For a nonlinear inverse, there is also a concern that approxi-
mated uncertainties may contain large errors. In a test, we found
that uncertainties approximated by (22) agreed well with more
accurate estimates determined by the bootstrap method (Efron,
1979). This result suggests that, near the best-fit solution, S has a
quasi-linear relationship with respect to the parameters (Press
et al., 2007, p. 807e818). We could use the bootstrap method to
estimate all errors, but it is computationally expensive.

Given uncertainties for the coefficients in E0, it is a simplematter
to use the method of Hext (1963) to calculate uncertainties for the
principal values and principal directions. This method has been
used in the Yale STRAIN3D program since 1996, and works well for
estimating uncertainties for strain analysis. The method is also
widely used for statistical analysis of anisotropic magnetic sus-
ceptibility data (e.g., Hext, 1963; Jelinek, 1978; Owens, 2000).

We report 95 percent confidence intervals for both the

Fig. 8. The uncertainty for a best-fit principal direction is represented by an elliptical
cone (gray line) that intersects the plane normal to the direction. The radii of the cone
are given by max a95 and min a95, and the orientation in the plane is given by the twist.
This example shows the elliptical cone for the Y principal direction. Positive X and Z
directions are shown for a right-handed coordinate system where Y points out of the
image.
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estimated magnitudes and directions for the principal strains, and
the isotropy test of Hext (1963), which tests if the principal strains
are significantly different from each other. The uncertainty for a
best-fit principal direction is represented by an elliptical cone that
defines the 95 percent confidence limit for the estimated principal
direction (Fig. 8). The orientation of each elliptical cone is reported
as the twist, which is the azimuth of the long axis of the cone in the
plane normal to the best-fit principal direction. Keep in mind that
principal directions are orthogonal. So given a best-fit principal
direction, the twist is defined by the azimuth from the second
principal direction to the third principal direction. The order of the
directions is defined by the repeating sequence þX, þY, and þZ,
which are positive axes in a right-handed coordinate frame. For
example, a twist of þ10* for the long-axis of the a95 elliptical cone
around the best-fit estimate for the Y principal-strain direction
would lie at 10* from the þZ direction towards the þX direction
(Fig. 8). For most cases, the twist is 0 or 90*, which indicates that
the elliptical cone is aligned with the second and third principal
directions.

7. Strain estimation examples

To demonstrate the advantages and limitations of our method,
we find the best-fit strain parameters for several examples. The first
set of examples, called “phantoms” (e.g., Shepp and Logan, 1974;
Ketcham, 2005b), are synthetic cases where numerical calcula-
tions are used to generate an isotropic aggregate of spherical grains,
which is then subjected to a known homogeneous deformation.
The second set of examples illustrates estimation for naturally
deformed rocks.

7.1. 3D synthetic (phantom) material

A 3D isotropic aggregate of spherical grains was generated using
an event-driven, molecular-dynamics sphere-packing code
(Lubachevsky and Stillinger, 1990; Donev et al., 2005a, 2005b;
Skoge et al., 2006; available at http://cherrypit.princeton.edu/
donev/Packing/PackLSD/Instructions.html). The code begins with
a set of randomly distributed spheres, each with an initial velocity.
The spheres interact with each other through collisions. The di-
ameters of the spheres grow linearly in time until the number of
collisions diverges and the diameters of spheres can no longer in-
crease (see Donev, 2006 for an excellent introduction to these al-
gorithms). These simulations are routinely used to study packing
and flow in granular materials, (e.g., Torquato, 2002; Luding, 2004).
This method generates aggregates that have the dense packing
typical of geologic aggregates. The algorithms can also be used to
create phantom materials with multiple grain sizes (Kansal et al.,
2002; Donev et al., 2005a, 2005b), and non-spherical grain
shapes (Donev et al., 2005a, 2005b).

The phantom contains 1200 non-overlapping grains that are
packed to an average porosity of 50 percent (Fig. 9a). Prior to
deformation, the grains were identical spheres, with a radius equal
to 10 voxels. The phantom was deformed coaxially with principal
stretches SX¼ 2, SY¼ 1, and SZ¼ 0.5. The X directionwas rotated 30*

from the sample x-axis toward the sample y-axis and the Z direc-
tion was aligned with the sample z-axes. The ACF for the deformed
phantom is anisotropic, which causes a large spread in z, especially
at r/R< 1.5 (Fig. 9b). Once the deformation is removed using the
estimated best-fit strain parameters, the ACF collapses down to a
single curve (Fig. 9c). The best-fit parameters agree well with those
for the known deformation (Table 1). Note that the estimated grain
radius, RS ¼ 97 mm, matches well with the known grain radius,
100 mm. The standardized residuals show some structure, but
otherwise appear to be fairly uniformwith increasing r0/R (Fig. 9d).

The DurbineWatson test indicates d ¼ 1.97, which is consistent
with our assumption that the residuals are independent.

Table 1 shows estimated deviatoric principal strains in terms of
both stretches S and natural strains E, which are reported in centi-
Neper (cNp). The Neper is the unit of measure for the natural-log
scale (Mills, 1995), in the same sense that the Bel is the unit of
measure for the base-10 log scale. A cNp is therefore equal to one
hundredth of a natural strain unit, in the same way that a dB is
equal to one tenth of a Bel. This scaling is convenient because, for
small natural strains, in the range #15 cNp < E < þ15 cNp, the cNp
designation is approximately equal to percent elongation (100 Dl/
l0). This relationship results from the small-value approximation for
the natural log, lnð1þ εÞzε forjεj≪1.

The confidence intervals for the stretches become asymmetric
as the stretch deviates from 1, whereas the natural log confidence
intervals remain symmetric in all cases. We have shown above that
the Hencky tensor, which is the tensor representation of the natural
strain, provides a compact notation relating tensor properties to
strain invariants (e.g., ED and EV in Brandon, 1995). Likewise, the
natural strains provide a simpler basis for estimating and reporting
uncertainties.

7.2. 2D image of undeformed oolite

Our first natural example is a 2D photomicrograph of unde-
formed ooids from the Jurassic Stump formation in Wyoming
(Fig. 10; Crespi, 1986). The image is more complicated than our
previous examples, in that the ooids have internal structure and
varying sizes. The Ramsay effect for this image is visible in the
initial decay of the ACF. The Fry effect is small for three reasons.
First, the ooids are anticlustered (e.g., Fig. 4d), but they are other-
wise randomly distributed. Second, the size variation of the ooids
reduces the Fry effect (Erslev, 1988). Third, resolution of the Fry
effect requires averaging over a much larger set of ooids (Crespi,
1986), and thus would require a larger image.

For this example, the strain estimates given by the ACF method
(Table 1) agree with those from the Rf/f method, which was
calculated using outlines for 42 ooids and the Rf/f estimation al-
gorithm of Shimamoto and Ikeda (1976). Note that for the 2D ex-
amples in Table 1, strains are reported as plane-strain deviatoric
values given that we have no information about volume strain or
the out-of-plane strain. The high value of R2 indicates the best-fit
solution fits the data very well. The DurbineWatson test indicates
no significant serial correlation. The residuals plot (Fig. 9d) shows
some structure, but this is not unexpected given that autocorrela-
tion estimates tend to retain some serial correlation (Priestley,
1981; Broersen, 2006).

7.3. 2D image of deformed oolite

A second photomicrograph example (Fig. 11a) shows deformed
ironstone ooids (figure 7.7 in Ramsay and Huber, 1983). This sample
is interesting because the ooid cores were deformed by an intra-
crystalline mechanism, whereas the rims show truncations and
fiber overgrowths, consistent with pressure solution. Ramsay and
Huber (1983) used the Rf/f and “Nearest Neighbor” methods to
estimate the within-ooid strain and the bulk strain, respectively.
The Rf/f results were determined by us (Table 1), using digitized
outlines of laminae from the core of the ooids, where they are not
truncated by dissolution. The estimates are virtually identical to
those from Ramsay and Huber (1983, p. 120, axial ratio ¼ 1.22). The
“Nearest Neighbor” estimate is based on Fig. 7.18 from Ramsay and
Huber (1983). All three methods give the same principal directions.
The ACF and Rf/f estimates are essentially identical (Table 1). The
reason is that the ACF is weighted towards the high-contrast ooid
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cores. The “Nearest Neighbor” estimate shows more strain, but this
is expected given the deformation between the grains, including
dissolution and overgrowths.

The ACF method works best where each grain has a relatively
uniform intensity. The concentric rings in the ooids could cause

problems. The ACF is influenced by this within-grain structure,
which might cause the ACF method to give biased strain estimates
(Fig. 12). The 2D image in Fig. 12 was constructed by drawing two
circular rings and then deforming the rings to a strain ratio SX/
SZ¼ 2. At small lags, the ACF contours for this image have simple

Fig. 9. Synthetic example (phantom) used to test the ACF method for estimating 3D strain. (a) A 3D rendering of the phantom, which was constructed from identical non-
overlapping spheres and then deformed homogenously. (b) Observed ACF in the deformed coordinate frame with lag normalized to the radius R of the undeformed spheres. (c)
Isotropic ACF, determined by removing estimated strain. (d) Standardized residuals for the best-fit isotropic ACF as a function of lag.

Table 1
Best-fit results for phantom, ooid, and MgeZr alloy samples.

Sample, method Principal magnitudes and directions Isotropy Prob.
(%)

Grain radius
RS (mm)

Fit

Princ. Axis S0 (l/l0) E' (cNp) Tr/Pl (deg) max a95 (deg) min a95 (deg) Twist (deg) R2 d

Phantom
Fig. 9 ACF X 2.00 (0) þ69.21(5) 330/00 0.0 0.0 01 Y-Z: 0

Y 1.00 (0) #00.36(4) 060/00 0.0 0.0 03 X-Z: 0 97a 0.96 1.97
Z 0.50 (0) #68.85(4) 234/90 0.0 0.0 90 X-Y: 0

Undeformed Oolite
Fig. 10 ACF X 1.02 (0) þ02.12(8) 121/00 0.9 0.0 90 Y-Z: 0 96 0.93 1.99

Z 0.98 (0) #02.12(8) 031/00 0.9 0.0 00 X-Y: 0
Rf/f X 1.00(2) þ1(1) 098/00 21 57 e e e e e

Z 1.00 (2) #1(1) 008/00 21 77
Deformed Oolite
Fig. 11 ACF X 1.13 (0) þ12.2(1) 020/00 0.3 0.0 90 Y-Z: 0 828 0.94 1.97

Z 0.89 (0) #12.2(1) 110/00 0.3 0.0 00 X-Y: 0
Rf/f
inside grain

X 1.09 (3) þ8(1) 020/00 3 3 e e e e e

Z 0.92 (3) #8(1) 110/00 3 3
Nearest Neighbor X 1.34 þ29.11 025/00 e e e e e e e

Z 0.75 #29.11 115/00
MgeZr Alloy
Fig. 15 ACF X 2.41 (0) þ87.8(5) 090/00 0.1 0.0 90 Y-Z: 0 21 0.94 1.41

Z 0.42 (0) #87.8(5) 180/00 0.1 0.0 00 X-Y: 0
MgeZr Alloy, segmented
Fig. 16 ACF X 1.18 (0) þ16.1(1) 080/00 0.2 0.0 90 Y-Z: 0 20 0.99 1.84

Z 0.85 (0) #16.1(1) 170/00 0.2 0.0 00 X-Y: 0

Errors are reported using concise notation. For example 1.4(3) ¼ 1.4 ± 0.3.
Orientations are reported in sample coordinates.

a Initial grain radius for the Phantom example was scaled to 100 microns for this calculation.
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Fig. 10. Use of ACF method to estimate strain for (a) 2D photomicrograph of undeformed ooids from the Jurassic Stump formation in Wyoming (Crespi, 1986). See caption in Fig. 9
for details of (b#d), and Table 1 for results.

Fig. 11. Use of ACF method to estimate strain for (a) 2D photomicrograph of deformed ooids (figure 7.7 in Ramsay and Huber, 1983). See caption in Fig. 9 for details of (b#d), and
Table 1 for results.
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elliptical shapes, but, at larger lags, the contours take on “hot dog”
shapes caused by smearing in the X direction. The smearing results
from correlation between the different rings, which produces an
upward bias in the strain ratio SX/SZ¼ 2.1, as estimated using the
ACF method. At larger lags, the correlation between the different
rings is reduced, and the contour shape is more elliptical.

7.4. 3D tomograms of pressure-solved sandstones

We now consider X-ray attenuation tomograms for a pressure-
solved sandstone from the Olympic Subduction Complex in
Washington State (Brandon et al., 1998). Sample 92810-3 is from
the Grand Valley Assemblage (Tabor and Cady, 1978) and was
deformed along a path that reached a maximum depth of about
12 km and a maximum temperature of 250* C at about 18 Ma
(Brandon et al., 1998). The microstructure of the sample is typical of
pressure-solved sandstones from this and other subduction com-
plexes (Tabor and Cady, 1978; Feehan and Brandon, 1999; Ring and
Brandon, 1999; Ring et al., 2001; Rahl et al., 2011).

The tomogram (Fig. 13) was acquired at the X-ray computed
tomography facilities at the Advanced Photon Source at Argonne
National Labs (Beamline 13-BM-D). The voxels are cubes,
measuring 7.54 mm on each side. The sample is approximately
3 ! 3 ! 10 mm, with X approximately aligned with the long
dimension of the sample. The X-ray attenuation is shown by the
grayscale, increasing from black to white.

The sandstone is a turbidite and is dominated by angular, first-
cycle volcanic detritus. The tomogram shows features related to
both the composition of the sandstone and the fabrics resulting
from the pressure-solution deformation (Fig. 14). As a reminder, X-
ray attenuation increases with grain density and mean atomic
number. In particular, minerals with high concentrations of Fe, Mg,
Ti and Zr are bright (high attenuation). For this sample, the white
grains correspond to pyrite, magnetite and zircon; the intermediate
grains, to lithic rock fragments; and the dark grains, to quartz and
plagioclase.

The tomogram also resolves fabrics related to the pressure-
solution deformation. Bright values on grain margins and sel-
vages are related to residual concentrations of insoluble phases,
such as FeeTi oxides and phyllosilicates. The fiber overgrowths are
dominated by quartz and white mica, and have a fairly uniform
appearance when viewed in thin section, despite the heteroge-
neous assortment of detrital grains. In the tomogram, the over-
growths also have a uniform appearance throughout the volume.
They everywhere seem to have a higher X-ray attenuation than
quartz, which might be due to the higher atomic number of po-
tassium in the white mica.

Thin section observations indicate that the shortening was
accommodated by localized dissolution between grains, and
extension, by the precipitation of directed overgrowths. Grain in-
teriors are generally undeformed. The fiber overgrowthsmantle the
grains in the X direction and are unidirectionally aligned with that
direction. From these observations we conclude that the initial
dimensions of the grains are preserved in the X direction. This
conclusion holds for many pressure-solved sandstones (Feehan and
Brandon, 1999; Ring and Brandon, 1999; Ring et al., 2001; Rahl
et al., 2011).

Some care is needed to account for this heterogenous inter-
granular deformation. We find it useful to identify how these
different components of the deformation affect the bulk principal
stretches. The change in grain shape, as caused by dissolution, is
represented by principal stretches SgX, SgY, and SgZ. The contribution
of fiber overgrowth is represented by principal stretches SfX, SfY, and
SfZ. The principal stretches for the bulk deformation are given by
SX¼ SgX SfX, SY¼ SgY SfY, and SZ¼ SgZ SfZ.

Considering that the grains have uniform interiors that compose
a large fraction of the image, our interpretation is that the ACF
method provides estimates of the change in grain dimensions
(Table 2). The thin section evidence indicates that the grain di-
mensions remain unchanged in the X direction, so SgX ¼ 1. As a
result, the other principal strains for the grain shape are SgY¼ 0.97
and SgX¼ 0.52. The volume stretch for the grains is SgV¼ SgX SgY SgZ,
which for this sample is SgVz 0.51, or about 50% loss of grain
volume.

For comparison, we also used the PDS method to measure grain
stretches (Table 2). PDS measurements are based on microscopy
measurements made in 2D thin sections, but they are corrected to
account for stereological effects associated with 2D sections
through 3D volumes (Rahl et al., 2011). The PDS method indicates
SgVz 0.76. The ACFmethod has the advantage that it provides a full
estimate in 3D, but is less sensitive to the actual dimensions of the
grains.

We consider now the bulk deformation of this sample, SX, SY and
SZ. Modal measurements indicate that fiber overgrowth composes
15 percent of the sample. For unidirectional fibers, the fiber-related
stretch in the X direction is SfX ¼ 1/(1 # m), where m is the modal
fraction of overgrowth (Feehan and Brandon, 1999). The bulk strain
in the Y and Z directions is limited to dissolution of the grain
boundaries, so SfY ¼ SfZ ¼ 1. Using the ACF results and the equations
above for fiber and grain strains, we estimate that the bulk strain in
this sample caused by pressure solution is SX ¼ 1.17, SY ¼ 0.97, and

Fig. 12. The effect of internal particle structure on the ACF. (a) A test object composed
of concentric rings with the same aspect ratio. (b) The ACF contours are not every-
where elliptical, but instead have “hot-dog” shapes at intermediate lags. The black line
is r*.
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SZ ¼ 0.52, with a volume stretch of SV ¼ 0.59. In other words, the
pressure-solution deformation generated a net 41% volume loss
from the bulk sample. Note that this analysis does not account for
deformation associated with compaction of the sandstone, as
selvage and overgrowth fabrics indicate that the sandstone had
little porosity when pressure solution started (see Feehan and
Brandon, 1999 for further discussion of this issue).

The initial grain size is estimated by fitting the two-component
model in (5) to the estimated isotropic ACF, and by scaling the
measurement to account for the absence of intragranular defor-
mation in the X direction. The estimated average grain radius is

149 mm (Table 2).

7.5. 2D image of deformed MgeZr alloy

Images and tomograms may also contain features that are un-
related to the deformation of the sample, so care is required for
proper interpretation of results. We discuss here an example that
illustrates this point.

Fig. 15a shows a hydrided MgeZr alloy with minor Zr grains
(Harris, 1973). Such materials are commonly used in nuclear re-
actors due to their resistance to creep at high temperatures (e.g.,
Wadsworth et al., 2002). The original fabric was formed by
inducing growth of Zr precipitates within the metal, and then
passing the alloy through rollers, which produces a flattening fab-
ric. Later, the alloy was subjected to a uniaxial extension, with X
oriented in the image vertical. The important point is that the
laminated fabric predates the extensional fabric. The alloy accom-
modated about half of the extension by dilational “veins” or over-
growths, and the other half bymicrofaulting of the rolled fabric. The
overgrowth regions are called “denuded zones” because they lack
the Zr precipitates that were in the original alloy. The fabric at
present appears granular, but the granular structure is actually
defined by microfaults.

The modal abundance of the denuded zones is 4.6 percent
(Harris, 1973), which accommodated 4.6 cNp of extension in the
vertical. Harris (1973) suggested the denuded zones formed by
mass transfer associated with Nabarro-Herring creep (see Xu et al.,
2015, for an alternative interpretation), which implies that the
“grains” have internal deformation as well. The ACF method
correctly estimated the principal strain directions, but failed to
correctly estimate the principal strains (Table 1). This result is not
surprising given that the laminar fabric has nothing to do with the
extensional deformation. One might speculate that the estimated
principal strains are representative of the full deformational history

Fig. 13. Tomogram for deformed sandstone (sample 92810-3 from the Olympic subduction complex). (a) 3D rendering showing principal strain axes and sections as determined
using the ACF method. (bed) Slices through the tomogram along principal strain sections. See Table 2 for results. The black box in panel (b) outlines the region shown in Fig. 14.

Fig. 14. Pressure-solution fabric elements in X-Z slice of sample 92810-3 tomogram.
Arrows indicate quartz/feldspar and lithic grains, fibrous overgrowths, and selvages.
The magnified view is outlined by the black box in Fig. 13b.
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of the alloy, including rolling and stretching, but we have no way to
test that idea.

Inspection of Fig. 15b shows that the deformed ACF field has a
complicated rectilinear pattern, quite different from the simple
ellipsoidal pattern seen in the previous examples. The ACF is clearly
dominated by the Zr precipitates, which have a large contrast with
the other features in the image. One can see that the ACF is not
elliptical, which is an indication that the image is not suitable for
strain estimation using the ACF method.

An alternative approach is to outline the “grains” and replace
the laminated fabric inside each grain with a uniform and unique
grayscale value (Fig. 16). The strain estimates for this example
(Table 1) indicate that the “grains” are slightly elongate in the
vertical, but the method overestimated the principal strains. The
reason that this example fails to give useful strain estimates is that

the “grains” are not passive markers, but instead were produced by
microfaulting. The ACF analysis could be useful, in this case, for
estimating the aspect ratio of fault-bounded domains, but it cannot
be expected to provide information about strain magnitudes.

8. Discussion

In this paper, we started with schematic examples that help
illustrate how the ACF might be used to estimate anisotropy and
strain. This conceptual framework builds on the pioneering work of
Panozzo Heilbronner (1992). Our main contributions are the
introduction of a least-squares method for estimating anisotropy
and strain from real images and tomograms, and a discussion of
how different fabric features influence the ACF estimates. The ex-
amples in Tables 1 and 2 provide a useful test of the ACF method,

Fig. 15. A cautionary tale for using the ACF method. (a) Photomicrograph and (b) ACF of an MgeZr alloy that was initially formed by rolling, which produced the vertical laminar
structure. The horizontal light gray zones in (a) are overgrowths that formed under high temperature conditions. During this deformation, the fabric was also broken into blocky
domains by shear fractures. See Table 1 for results.

Table 2
Best-fit results for pressure-solved sandstone sample.

Sample,
method

Principal magnitudes and directions Isotropy Prob.
(%)

Grain radius
RS (mm)

Fit

Princ. Axis Sg (l/l0) Eg (cNp) Tr/Pl (deg) max a95 (deg) min a95 (deg) Twist (deg) R2 d

92810-3
Fig. 13 ACF X 1.00 (0) þ00.00(5) 263/09 0.8 0.0 00 Y-Z: 0

Y 0.97 (0) #02.68(5) 169/20 0.8 0.0 00 X-Z: 0 120 0.97 1.97
Z 0.52 (0) #64.91(5) 016/68 0.0 0.0 84 X-Y: 0
V 0.51 (0) #67.59(9) e e e e e

PDS X 1.00 (0) þ00(0) 263/09 14 14
Y 1.00 (10) þ00(10) 169/20 14 14 e e e e e

Z 0.76 (8) #27(10) 016/68 14 14
V 0.76 (10) #27(13) e e e

SgX is set to 1 because grains have not deformed internally in the X direction.
Errors are reported using concise notation. For example 1.4(3) ¼ 1.4 ± 0.3.
Orientations are reported in geographic coordinates.
PDS measurements and errors are calculated according to Feehan and Brandon (1999) and 3D correction introduced by Rahl et al. (2011).
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and illustrate some complex cases where the method might fail or
special care is required to get useful results.

We finish herewith a discussion of some general issues. The first
concerns the interpretation of the least-squares uncertainties. The
next are three issues for future development of the ACF method.

8.1. Estimated least-squares uncertainties

Many readers may be skeptical of the small estimated un-
certainties reported for our ACF estimates (Tables 1 and 2). What is
important to remember is that the reported uncertainties are only
representative of the uncertainty associated with the least-squares
estimate. The least-squares method not only estimates a best-fit
model, but also the residuals, which are the estimated errors in
the data relative to that model. The uncertainties in the parameters
are simply a function of how the variation in the residuals translates
into variation in the estimated values of the parameters.

There may be other sources of error beyond those represented
by the residuals. For example, the model may be incorrectly spec-
ified. The best check for a well-fit model is by inspection of the
results, such as the deformed ACF, the undeformed ACF, and the
residuals relative to the estimated isotropic lag. The R2 and Dur-
bineWatson statistics provide additional diagnostic clues.

Usually, it is obvious when the model function fails. The MgeZr
alloy provides a useful example, in that the contours of the
deformed ACF are far from elliptical. Thus, we should know, long
before applying the ACF method, that the method will probably not
work.

It might also be thought that heterogeneous strain at the grain
scale may also invalidate the ACF results. The pressure-solved ex-
amples illustrate a common type of heterogeneous deformation,
where the deformation is accommodated by dissolution and pre-
cipitation in different positions along grain boundaries. However,

we have shown that the method seems to work well for estimating
grain strain in the pressure solution examples, because the grains
are the dominant features of the fabric.

8.2. Symmetry of the ACF

Our strain estimates have orthorhombic symmetry, because the
model function is based on the strain tensor, which cannot repre-
sent symmetry lower than orthorhombic. The ACF, however, only
requires a center of symmetry, and thus can represent symmetries
less than orthorhombic (Priestley, 1981; Panozzo Heilbronner,
1992). Therefore, we anticipate that the ACF method may be use-
ful for studying low symmetry fabrics, such as those found in rocks
from ductile shear zones. For example, the ellipticity of large por-
phyroblasts may be significantly different from small neoblasts or
micas in the surrounding matrix. Panozzo Heilbronner (1992)
provided examples of ACFs with lower than orthorhombic sym-
metry, and some suggestions for interpreting these fabrics, such as
the sense of shearing.

8.3. ACF sensitivity

In our opinion, themost important next step for the ACFmethod
is to characterize the sensitivity of the ACF for different fabric fea-
tures. The intensity provides a clue as to what features will domi-
nate. But as Fig. 6 demonstrates, the influence of fabric features at
any particular ACF lag value is also dependent on the feature size
and spacing. If the ellipses in Fig. 6 had similar intensity values, the
ACF would find parameters that are some average of the anisotropy
of the two elliptical phases. A method of adjusting intensity values
in the image to focus the ACF estimates of strain on different fabric
elements would be useful. For the MgeZr alloy (Figs. 15 and 16),
segmenting the fault-bounded domains focused the ACF estimate

Fig. 16. Segmentation of the “grains” in the MgeZr alloy dramatically changes the best-fit strain results. (a) The “grains” are manually segmented and assigned uniform grayscale
values. (b) The ACF suggests the segmented grains are elongated in the vertical direction. Black line marks the r*0 contour. See Table 1 for results.
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of anisotropy on the fault-bounded domains, rather than the foli-
ated Zr streaks.

For 3D objects, manual segmentation of each slice is labor
intensive, and computerized segmentationmethods (e.g., Ketcham,
2005b) may be especially useful. In many images, however, there
may be too much overlap in the intensity values of different fabric
features to allow for precise segmentation. We found this to be the
case for the pressure-solved sandstone (Fig. 13). These cases require
a continuous adjustment to the intensity values to emphasize
different features. One approach would be to manually adjust the
intensity values in Photoshop using the gamma-correction tool. The
same correction can be automated and applied to each “slice” in a
stack of images that makeup a tomogram. Alternatively, a statistical
approach can also be used to continuously rescale the intensity
values (Eisemann et al., 2011).

8.4. Dynamic range and neighbor correlation

An additional objective is to allow for estimation of anisotropy
as a function of lag. At present, the X-ray tomogram of the pressure-
solved sandstone example has excellent resolution for estimating
self-correlation, but it lacks the sample size and dynamic range to
estimate neighbor-correlation.

To explain, let's consider first the requirements for minimum
resolution. In our experience, the raw image should have a voxel
size smaller than about 2.5 percent of the grain diameter. This value
allows for “2! 2 binning”, as needed to remove aliasing errors
(Rivers et al., 2010). As a result, the actual operational image should
have a voxel size smaller than 5% of the grain diameter. For com-
parison, the tomogram for our pressure-solved sample has voxel
sizes of 7.54 mm, which works out to ~3% of the grain diameter
(2RSz 240 mm). One might consider smaller voxels if there are fine
features, such as overgrowths or selvages, that need to be identified
for modal analysis or removed by image processing. Accurate
modal analysis would require a voxel resolution of 1e5 mm.

What we are lacking at present is sufficient dynamic range,
which would allow images of larger samples while maintaining
local resolution. For example, our tomogram for the pressure-
solved sandstone has an average of ~6 grain diameters across
each dimension. This size is sufficient for determining self-
correlation, but it is inadequate to fully resolve neighbor-
correlation. For example, Crespi (1986) estimated that, for the Fry
method in 2D,measurements of about 500e1000 grains are needed
to get a successful solution. This works out to an image with an
average of 22e32 grains across each dimension. Thus, the pressure-
solved sandstone, which has an average grain diameter of ~220 mm,
would require tomograms that are 5e8mm in each dimension. The
raw image, after binning, would have to be 880 to 1200 voxels per
dimension. For comparison, each working dimension of our crop-
ped tomograms is about 400e500 voxels.

X-ray tomography imaging can be divided into two types of
setups: commercially available desktop scanners and custom-
designed synchrotron facilities. Commercial scanners use X-ray
tubes, in which a target, such as tungsten, is impacted by an elec-
tron beam to generate X-rays. For synchrotrons, electrons traveling
at velocities near the speed of light are accelerated in storage rings
using bending magnets, undulators, and wigglers. The electrons
produce X-rays as they circle through the storage ring, and those X-
rays are extracted at fixed points around the ring. The main dif-
ference between commercial and synchrotron scanners is that the
synchrotron has a much larger photon flux spread over a larger
range of X-ray energy (Fusseis et al., 2014). As a result, the X-ray
beam can be filtered to specific energy bands while maintaining a
large enough photon flux for tomography. Selecting a specific en-
ergy band is useful for avoiding beam-hardening artifacts, or

optimizing attenuation contrast. In addition, a large photon flux
means that the tomogram can be acquired quickly, on the order of
10 min at present, and with low image noise. In contrast, the lower
photon flux for commercial systemsmeans acquisition times on the
order of 1.5e4 h for similar sample sizes.

The voxel resolution and sample size requirements also differ
between commercial and synchrotron systems. The Argonne APS
Beamline 13-BM D can image a cylinder with a diameter less than
50 mm and a height less than 4 mm. The CCD in use during our
measurements provided 650 pixels across the radial dimension
after binning for aliasing. If we consider an 8mm diameter cylinder,
the voxel resolution would be about 12 mm (see Gualda and Rivers,
2006, for further details). Commercial systems are more flexible
about sample size and can also provide voxel sizes down to the
micron scale for small samples. But as noted above, the acquisition
times are much longer.

The small sample size creates another problem, in that it
is challenging to maintain a reference to the geographic orientation
of the sample. Given our experiences, we recommend that samples
be prepared as small cores, on the order of 8mm in diameter, which
is about the diameter of a pencil, and several cm in length.
The azimuthal direction of the core could be marked with a scribe.
Using this approach, the orientation of the core can then be directly
acquired from the tomogram. For comparison, note that a
rock chip for a standard thin-section billet is about
26 mm ! 46 mm ! 10 mm.

9. Conclusions

We have outlined the utility of the ACF method for estimating
anisotropy and deformation. Our analyses here have emphasized
thin-section images and X-ray tomograms, but clearly the ACF
method can be applied to other kinds of field variables, such as
composition and crystal orientation. In comparison to other
methods of strain estimation, the ACF method allows for more
precise representations of objects, and does not require fitting el-
lipses to objects or abstractions of grain boundaries. The method
also works equally well for both 2D and 3D images.

The method works best for images or tomograms where grains
have a uniform internal intensity but a strong contrast with the
intensity of other grains and matrix. For example, a tomogram of a
granite or a polymictic sandstone should work well, but a tomo-
gram of a monomineralic rock, such as a limestone, dunite, or
quartzite, would likely give poor results unless there are significant
variations in attenuation between grains. It is also a challenge to
work with grains that have complicated internal structure, as
illustrated by the examples of the ironstone oolite and the MgeZr
alloy. There are ways to treat these cases, such as manually seg-
menting grains, as was done for the metal example. In this regard,
computerized segmentation methods (Ketcham, 2005b) may prove
useful, especially for 3D tomograms. Right now, our analysis is
weighted towards the self-correlation component of the ACF, and
thus is most sensitive to particle shapes. Further work is needed to
develop methods that would be able to provide separate estimates
of the anisotropies associated with self-correlation and neighbor-
correlation. The method could also be generalized to give a
continuous estimate of anisotropy as a function of lag.
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